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ABSTRACT

The Fay-Herriot model, a simple mixed regression model, has played an important role in small-area estimation.
In this paper, we firstly motivate the use of empirical best linear unbiased predictors (EBLUP) using several
special cases of the Fay-Herriot model. We then critically examine different issues involving estimation and
prediction, including the variance component estimation andthe measure of uncertainty ofan EBLUP.
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1. INTRODUCTION

Various government agencies (e.g., the U.S. Census Bureau, Statistics Canada,
Central Statistical Office of U.K., etc.) are in need of producing reliable small-area statistics.
A small-area (or small domain) generally refers to a subgroup of a large target population.
The subgroup may refer to a small geographic region (e.g., state, county, municipality, etc.), a
particular demographic group (e.g., black female in the age group 18-24) or a demographic
group within a small geographic region. Small-area statistics are needed in regional planning
and fund allocation in many government programs and thus the importance of producing
reliable small-area statistics cannot be over-emphasized.

There is a long history of small-area estimation. Brackstone (1987) cited the use of
small-area statistics in 11th century England and 17th century Canada when the small-area
statistics were mostly based on administrative or census records. Nowadays most private and
government agencies rely on sample surveys for publishing official statistics. With the help
of a well-designed sample survey, quality data on a variety of variables can be frequently
collected at a lower cost. Because of the heavy reliance on survey data by different statistical
agencies, a natural question is: can sample survey data be used in estimating small-area
characteristics?

Clearly, a design-based estimator, which uses only the sample survey data for the
particular small-area of interest, is unreliable due to the small sample size for the small-area.
For example, in a statewide telephone survey of sample size 4,300 in the state of Nebraska,
U.S.A., only 14 observations are available to estimate the prevalence of alcohol abuse in the

.Boone county, a small county in Nebraska. The problem is even more severe for direct
survey estimation of the prevalence rate for white female in the age group 25-44 in this
county since only one observation is available from the survey. See Meza, et al. (2003) for
details.
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Different strategies can be considered at the design stage to improve on small-area
statistics. For example, more stratification and less clustering are likely to increase the
efficiency of small-area statistics. Also, one can develop a suitable sample allocation formula
so as to increase the efficiency of design-based estimators for small-areas. Ideally, these
strategies should be considered in such a way that will not result in a considerable increase in
the total survey cost and permit estimation of large area characteristics with a desired level of
accuracy. Readers interested in learning more about these design strategies are referred to
Rao (2003) and the papers cited therein.

Even after adopting good practices at the design stage, standard design-based methods
do not usually offer a small-area statistic with an acceptable level of accuracy. In order to
improve on design-based estimators, several indirect and model-based methods have been
proposed in the literature. These improved estimation procedures use implicit or explicit

. models, which borrow strength from related sources such as administrative and census
records, and previous survey data. .

In order to estimate per-capita income for small areas (populations less than 1,000),
Fay and Herriot (1979) used an empirical Bayes method, which combines the U.S. Current
Population Survey data with various administrative and census .records. In order to
incorporate both the sampling and model errors, Fay and Herriot (1979) used a two-level
model, which can be either viewed as a Bayesian model or a mixed regression model. Their
empirical Bayes estimator [also an empirical best linear unbiased predictor (EBLUP)]
performed better than the direct survey estimator and a synthetic estimator used earlier by the
U.S. Census Bureau. The Fay-Herriot model and the associated EBLUP are now widely used
in small-area estimation and related problems. .

The Fay-Herriot model has been implemented using a Hierarchical Bayes (HB)
approach, which is straightforward, in the sense that the posterior distribution, once obtained,
can be used for all inferential purposes. However, it requires a specification of the prior
distribution on the regression coefficients and the variance component (known as' hyper­
parameters in the Bayesian literature). The method requires checking the propriety of the
posterior distribution of the parameter(s) of interest and the convergence of the Markov
Chain Monte Carlo (MCMC) method often used to approximate the posterior distribution. In

. the passing, we note that MCMC methods could be very time consuming for more complex
multi-level small-area models.

In an EBLUP approach, the best linear unbiased predictor (BLUP) of the small area is
first produced using the general theory of Henderson (1975) and then the unknown variance
component(s) is (are) estimated by a standard method [e.g., maximum likelihood (ML),
residual maximum likelihood (REML), ANOVA, etc.]. The resultant predictor, i.e., the
BLUP with estimated variance component(s),. is known as an EBLUP of the true small-area
mean. Unlike a HB approach, an EBLUP approach does not require any specification of the
prior. distribution on the hyper-parameters and it generally takes considerably less time in
producing the small-area estimates. However, for some data set, the standard methods may
produce an unreasonable zero estimate of a variance component, especially when the number
of small-areas is small. In the context of the Fay-Herriot model, we critically examine this
issue and review a recent paper by Lahiri (2003) who suggested some remedies. Another
challenging problem in an EBLUP approach is to obtain a reliable measure of uncertainty of
an EBLUP that captures all sources of variabilities. We critically review different methods of
producing uncertainty measures that have been proposed in the literature for the last fifteen
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years. In this paper; we do not attemptto cite all the papers that use the Fay-Herriot modelor
its extension. Suchreferences can be found in Rao (2003).

2. EBLUP WITH NO AUXILLARY VARIABLE

The following hypothetical example reminds us of the deficiencies of the usual
design-based estimators for small-area estimation and the need for considering estimators that
are possiblynot design-unbiased.

A large-scale national sample survey produces the following unbiased estimates of
per-capita income for two of its states (small-areas): State A: $15,000 and State B: $30,000.
Based on these estimates, a decision is made to provide federal assistance to State A than
State B. Is it a fair allocation of federal money? We cannot, of course, support this fund

.allocation plan if it turns out that the standard errors for these estimates are: StateA: $15,000,
State B: $2,000. In this case, the huge difference in the per capita incomeestimates for these
two states may not be real and can be explained by the very unreliable (reflected by high
standard error)unbiased estimate of StateA.

What can we do to improve a situation described above? Should we consider a
slightly biased estimator if it reduces the variability of this estimator? To this end, we revisit
the well-celebrated James Stein estimator in the small-area estimation context. Let Y/ be the

direct estimator of the true mean 8/of the ith small-area, i =1, 2, ... , m. UsuallyY/ is an
average or a weighted average of observations in the ith small-area and is typically design-

ind •

unbiased (or nearly so) for 0" i = 1, 2, , m . Let YI.-N«(J/,I) i = 1, 2, ... , m and consider

the simultaneous estimation of 8 =(8., ,8m )' . Under the sum of squared error loss, the

frequentist's risk of Y =(y., ... ,Ym)" as an estimator of 8, is givenby

m

R(O,y) =LE[(y, - ( 1)2 ~I] =m
1=\

It is well-known that for m ~ 3, Yis uniformly (i.e., for all 8) inferior to the well-celebrated
•• AJS AJS AJS I

James-Stem estimator 8 =(8\ , ... ,8m ) , where

A JS m-2 ~
8\ =(1- --)yP s =£..J y/2,

S 1=\

and

If 8/ =0, (i =1, ... , m) then

R(8,e Js) ~ [m - (m - 2)]=2
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Thus, the largest reduction is obtained when If Oi =0, (i =1, ... , m)and m large. However,

this is hardly realistic since some variation in the OJ'S is expected.

The above discussions suggest that the justification of the James-Stein estimator lies
. in the following two-level model:

Modell: A Two-Level Model

ind

• Levell: Yj IOi - N(Op1), i = 1,... , m;
ind

5 Level 2: 0i - N(O, A), i = 1, ... , m;

We assume that A>O since otherwise OJ =0, (i =1, ... , m). Efron and Morris

(1973) used the above two-level model (also a Bayesian model) in order to provide the
following empirical Bayes interpretation of the James-Stein estimator:

Under Modell, the posterior distribution of OJ is given by:
ind 1

Oi IYI - N[(l- B)Yp1- B], where B =--. We note that B is strictly less than 1 since A
l+A

> 0. The Bayes estimator of OJ' under the squared error loss function, is then given by

When B is unknown, it can be estimated by iJ = m -
2

,an unbiased estimator of B under the
s

marginal distribution of y. The following empirical Bayes estimator of 0i is obtained from

the Bayes estimator by plugging in iJ for B:

The empirical Bayes estimator 81
EB can be also motivated by a linear empirical Bayes

approach where the normality assumption for both levels of Model 1 is replaced by the
assumption of posterior linearity, i.e., E[Oj IYI] =a +by., where a and b are constants. It is

also an EBLUP under the following simple random effects model:

where the sampling errors {e.}and the random effects {Vi} are uncorrelated with

Vi - (0, A) and el - (0,1), i =1,... , m. Without the assumption of normality, iJ is no longer

unbiased and the uniform dominance of the James-Stein estimator over Y, if true, has not been
established.
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It is interesting to look at the James-Stein estimator from a survey sampler's
viewpoint where Y,'s are treated as fixed and the entire randomness is induced by the

sampling design. Let Yibe a design-unbiased estimator of the true small-area mean

0i (i =1,... , m) . It is easy to see that the usual design-based bias and variance of this

estimator - BOi and (1- B)2, respectively. Thus, on the average, the estimator

underestimates 0i' Also, as B approaches 1, the absolute bias increases but the variance

decreases. A robust way to compare (1- B)Yi with the design-unbiased estimator Yi is to

compare the design-based mean square error, defined as MSEd(e i ) =EAe/ .... 0/]2, where e,is

an arbitrary estimator of 0i andEd is the expectation with respect to the sampling design. It

is easy to see that

Thus, the best case for this estimator is when 0/ ~°and B ~ 1.

We point out that B is an important factor that provides relevant information about
the choice of the James-Stein estimator over the direct estimator. As discussed earlier, we
should seriously consider the James-Stein estimator whenB is v.ery close to 1 and m is large.

However, B is generally unknown and thus one may consider iJ to understand the utility of

the James-Stein shrinker for a given data set. For some data set, iJ may be more than 1 in
which case it is usually truncated to 1 yielding an unreasonable estimate of B. Note that the
ML method could have a similar problem. One must obtain a reasonable estimator of
B before using this to determine the utility of the James-Stein shrinker. The problem can be
solved when some information onB is available through a probability distribution on (0,1).
To a Bayesian, this is a prior distribution onB; to a non-Bayesian, this is a part of a multi­
level model (in this case, a three level model).

. The real problem is when nothing is known about the distribution onB. In this case,
there is a difference between the Bayesian and non-Bayesian estimation. In a non-Bayesian
approach, B is treated as a fixed unknown parameter while in a Bayesian approach, a vague
prior distribution is assumed forB (i.e.,B is assumed to be a random variable under a
Bayesian approach). However, this apparent difference between the Bayesian and non­
Bayesian methods of estimation can be made smaller. The problem associated with the ML
approach can be easily rectified in a non-Bayesian framework by choosing alternate measures
of central tendency (e.g., median, mean, etc.) of the probability distribution obtained by
standardizing the marginal likelihood function. Note that the ML estimator of B essentially
corresponds to the mode of this standardized marginal likelihood. The problem does not
seem to be with the marginal likelihood but the choice of the measure of central tendency of
the standardized marginal likelihood. Needless to say that the Bayes estimator ofB with a
uniform vague prior on (0,1) is identical·to the average of the standardized likelihood.

In a Bayesian approach, there is a debate as to which vague prior for B should be
chosen. Of course, if is difficult to reach a consensus among the Bayesians unless there is an
agreement about the evaluation criteria for the vague prior selection. Using a Monte Carlo
simulation study, Chen (2001) compared the two-level marginal mean square error of
different HB estimators of B under a variety of prior ~istributions on B for different values
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ofB. As expected, there is no unique prior distribution on B that emerges as the best for all
B but certain priors emerge as viable choices.

As argued earlier, there is no need to introduce a vague prior distribution on B in order
to obtain an estimate ofB that is strictly less than 1 - one can simply choose a different
measure of central tendency of the standardized marginal likelihood. As an alternative,
Lahiri (2003) considered certain smooth estimators ofB which can be viewed as a weighted
average of 1 and the usual unbiased estimator of B, the weight assigned to 1 being a
decreasing function of the test statistic for testing H0 : A =0 .

The above two-level model lays. the. foundation of more complex commonly used
multi-level small-area models. We shall now discuss some simple useful extensions of
Modell. Efron and Morris (1975) extended the model by replacing the known zero mean in
-the second level by an unknown mean u . They illustrated the superiority of an empirical

Bayes estimator over the direct estimator in the context of estimating the 1970 season batting
averages of 18 major league baseball players based on batting averages of these players 45 at
bats. For this model, the Bayes estimator of OJ is given by:

Efron and Morris (1975) estimated p. and B by their unbiased estimators y=m-tI :1Yj ,

and B =(m -3)IL:t(Yj - y)2 ,respectively. An empirical Bayes estimator of OJ is then

given by

The data analysis given in Efron and Morris (1975) clearly shows that their empirical Bayes
estimators perform much better than the direct estimators on the average. An extension of the
Efron-Morris model tothe unbalanced sampling variances can be found in Carter and Rolph
(1974) who estimated the probability that a box-reported alarm signals a structural fire given
the alarm box location. .

Model-based small area estimation is usually thought to be important only in the
presence of strong auxiliary information. However, the above two examples demonstrate the
utility of empirical Bayes estimators or EBLUP's even when there is no auxiliary
information. The main reason for the success of the empirical Bayes method in these two
situations is that the true small-area means appear to be more or less exchangeable yielding
high values of the factor B or B, in the unbalanced case. For example, an unbiased estimate

of B is 0.791 for the baseball data. When no auxiliary information is available or when the
relationship between the main variable and the auxiliary variable(s) is not clear cut, one may
seriously consider a method similar to Efron and Morris (1975) or Carter and Rolph (1974)
on the group of small-areas which can be approximately treated as exchangeable.
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The discussions in Section 2 do not by any means imply that auxiliary information is
not needed in a small-area estimation problem. An intelligent use of strong auxiliary
information will certainly improve on small-area estimation. For example, Fay and Herriot
(1979) considered the following extension of the Carter-Rolph model where they replaced the
common mean IJby a linear regression:

The Fay-Herriot Model:
lnd

• Levell: YI 181 - N(8"DJ, i =I, ... , m;
Ind 0

• Level 2: 81 - N(xJ3,A), i =I, ... , m.

. .
In Fay and Herriot (1979), the sampling variances D, were assumed to be known

although they were really estimated using a generalized variance function technique. In the
above model, XI represents a vector of known auxiliary variables such as tax return data,

housing data, etc.

Under the Fay-Herriot model, the Bayes estimator of 8, is given by:

whereB, = D
,

,¢ = (P,A)'.
D,+A

IfA is known, p can be estimated by

a weighted least square estimator of p. Replacing p by P(A) we get the following

empirical Bayes estimator of 8,:

We note that 81(YI; A) is also the BLUP under the following mixed regression model:

where the sampling errors [e.] and the random effects {VI} are uncorrelated with

VI - (O,A) and e, - (O,D,), i == I, ... , m .
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When both f3 and A are unknown we propose the following empirical Bayes (same

as EBLUP) estimator of 8; : .

where H; = D;~. Different estimators of A such as the standard ANOVA estimator, ML,
D;+A

REML and the Fay-Herriot estimator have been proposed in the literature. While all of them
perform well for large m, they have the problem of producing zero estimates for A,
especially for small and moderate m. A Bayesian method can always produce a positive
solution for A. But, this, in turn, generates another problem of choice of prior for A.
Certain non-Bayesian strictly positive estimators of A have been discussed by Lahiri (2003).

The assumption of known sampling 'variances D; are often justified by means of the

standard asymptotic theory of transformation of variable and/or empirical evidence of the
relationship between the estimated coefficient of variation and relevant census or
administrative variable(s). Thus, usually once an EBLUP is found, it needs to be transformed
back in the original scale. A narve method calls for taking a reverse transformation.
However, Lahiri (2003) suggested alternative Bayesian and non-Bayesian solutions, which
need to be evaluated through simulations.

4. MEAN SQUARE ERROR ESTIMATION

We define the two-level marginal mean square prediction error as

MSPE(O;) =E[(O; -8;)2], where the expectation is taken over the marginal distribution of

y under the Fay-Herriot model. For the last two decades, several attempts have been made to

estimate MSPE(O;) accurately. We will now explain some of the approaches in estimating

MSPE.

Note that by the Kackar-Harville identity [see Kackar and Harville, 1984], we have

(1)

where
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I
I'
I

'.

A narve MSPE estimator is obtained by estimating the MSPE of the BLUP and is
givenby:

Intuitively, this naive MSPE estimator is likely to underestimate the true MSPE since it fails
to incorporate the additional uncertainty due to the estimation of A. In fact, Prasad and Rao
(1990) showed that the order of this underestimation is O(m-t

) under the following regularity
conditions:

(r.1) O<DL ~D, ~Du <00, 'Vi=I, ... ,m;

where hit =x'(L;=IXjX~rt XI is the leverage. Interestingly, the natve MSPE estimatoreven

underestimates the true MSPE ofthe BLUP,the order of underestimation being O(m-I
) .

Prasad and Rao (1990) proposedthe following MSPE estimatorwhen A is estimated
by the usualmethodof moments:

where gJI = :D1
2

~m (A +Dj ) 2 . This estimator was obtained using the argument
m2(A+D,)J LJj=t

that under regularity conditions (r.1) and (r.2),

(c) The terms g2l(A) and gJ,(A)are of the order O(m-t ) and A is a consistent
estimator of A.

The Prasad-Rao formula and other MSPE estimators based on the Taylor series
approximation are often criticized on the ground that the formulae are obtained using
regularity conditions (r.l) and (r.2) and large m which may not be satisfied in many
applications. While the Bayesianposterior variances do not need these regularity conditions
and large m, they have a differentproblem of selection of a prior distribution for A. Chen
and Lahiri (2003b) studied the exact relative contributions of the three terms in the right hand
side of (1) for a special case of the Fay-Herriot model when x, =1, D, =D, i =1, ... , mand

A is the usual untiuncated unbiased quadratic estimator of A given in Prasad and Rao
(1990). We restate their results in our notation.
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The relative contributions of the three terms in the right hand side of (1) are given by:

1-B
B m-1 2B'

1-B+-+---­
m m-3 m

B

m .
B m-1 2B'

1-B+-+---­
m m-3 m

m-12B

m-3 m
B m-12B·

1-B+-+---­
m m-3 m

Chen and Lahiri (2003) noted the following:

(a) The relative contributions do not depend on D.

(b) For fixed 0 < B <1, hi (B, m) is an increasing function in m with

lirnmf oo hi(B,m) =1. On the other hand, h2(B,m) and h3(B,m) are decreasing

functions of m with limmf oo h2(B,m) = limmf oo h3(B,m) = o.

(c) For fixed m, h,(B, m) is a decreasing function in B with limB.j,O hi(B, m) = 1 and

limBf 1 h. (B,m) = O. On the other hand, both h2(B,m) and h3(B,m) are increasing

functions of B with

lim h2(B,m) =limh3(B,m) =0;
B.1.o BJ..O

1
lim h2(B,m) = 2(m -1) ;
Bfl 1+ ----=--..:...

m-3
1

lim h3(B,m)=----
Btl m-1

1+---
2(m -3)

In the presence of an auxiliary variable, Chen and Lahiri (2003b) showed that the
relative contribution of g 2 (A) is an increasing function of the leverage and may be even

larger than the relative contribution of gl (A).

The above results point out the diffIculties in establishing an appropriate asymptotic
framework, which works for all situations. The simulation study of Chen and Lahiri (200?b)
shows that the Taylor series method tends to overestimate the true MSPEconsiderably
compared to the jackknife and the parametric bootstrap methods and this overestimation
increases with the increase of B. It is interesting to note that both the jackknife and the
parametric ~ootstrap methods, like the Bayesian method, are not derived using any
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approximation but both enjoy the same second-order property of the Prasad-RaoTaylor series
method under the regularityconditions (r.1) and (r.2).

We now review the jackknife and the parametric bootstrap methods. For the Fay­
Herriot model, the jackknife MSPE estimator proposed by Jiang, Lahiri and Wan (2002)
reduces to:

where

(a) Note that

~" A A" :I
MPSE[8/ (y/; A)] = gl/(A) +E[8j(Yi; A) - 8/(Y/;(J)] .

Jiang, Lahiri and Wan (2002) exploited the above identity in order to cover a general non­

normal nonlinear mixed model. In the above, 8/ (y/; ¢» is the best predictor (BP) of 8/ under

the assumption E[8/ IY/] =a +by., where a and b are constants.

(b) The second term of the jackknife formulacorrects the bias of gl/(A).
(c) The third term of the jackknife formula is carefully deviced so as to capture the

additional uncertainties due to the estimationofPand A. We stress that both /J and A need
to be recomputedusing the deleted samples.

Chen and Lahiri (2002) proposed a different jackknife MSPE estimator especially
designed for a mixed linearnormalmodel. For the Fay-Herriotcase, this is given by:

mspe/CL = gl/(A) +g2/(A) - i:W u (glj(A_u ) + g2/(A-u ) -u.co+ g2l(A)])
u=1

m

+L wJ8/(y/;.iu> -8/(y/;A)]2.
u=1

Chen and Lahiri (2002) suggested two choices of
m-l

w =-­u m
and

Wu =x~ (L~l XjX~)xu' Note that mspe;X is different from mspeiLW in two respects. First,



12 Lahlrl: A Review of Empirical BestUnearUnbiased
Prediction for theFay-Hemot Small-Area Model

Chen and Lahiri (2002) used more exact calculations by exploiting the Kackar-Harville
identity, which is valid for the normalassumption, Secondly, the method also adjusts the

g2/(A) term for bias. Although in the standard second-order asymptotic sense this adjustment

is not needed, we may not ignore this bias correction when the relative contribution from
g 2/ (A) is significant.

Butar and Lahiri (2003) proposed the following parametric bootstrap
MSPE estimator:

In the above, E. is the bootstrap expectation, i.e., expectation with respect to the Fay-Herriot

model with Pand A replaced by /J and A, respectively. We obtain A· using the formula

for A with the original sample replaced by the bootstrap sample. In practice, Monte Carlo
methods are employed to approximate the bootstrap expectations.

. .
Note that because of the bias correction term, the jackknife and parametric bootstrap

methods could produce negative estimates. This was first observed by Bell (200I) in the
context of jackknife MSPE estimator. But this can be easily corrected as noted by Chen and
Lahiri (2003) who recommended the following MSPE estimator in case mspe;CL yields a

negative value:

where VWJ =L~=I W
U

(Au - A)2 Similar corrections can be made for mspe(LWand mspe;BL.

For small m, A could yield a zero estimate. This is problematic for all the MSPE
estimators described earlier. In order to achieve good small sample properties, Chen and

Lahiri (2003a) suggested using g2;(A}for a MSPE estimate whenever A =O..

Chen and Lahiri (2003b) conducted an extensive simulation study to compare the
Taylor series, jackknife and parametric bootstrap MSPE estimators for a special case of the
Fay-Herriot model when D; = D, i = 1,... , m. The Chen-Lahiri jackknife estimator and the

Butar-Lahiri parametric bootstrap are very robust for different values of B and the leverage,
and overall they perform very well compared to the other methods. The performance of the
Jiang-Lahiri-Wan jackknife and the Prasad-Rao Taylor series MSPE estimators depend very
much on the combination of values of B and the leverage.

For a special case of the Fay-Herriot model when D; =D and

x;P =p (i =1,... , m), Butar and Lahiri (2003) showed that their parametric bootstrap

MSPE estimator is identical to a measure of uncertainty proposed by Morris (1983) up to the
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order O(m-I) if an unbiased estimator of B =DI(A +D) 'is chosen in the EBLUP formula.

This is also true for the Chen-Lahiri jackknife MSPE estimator. Thus, the parametric
bootstrap and the Chen-Lahiri jackknife MSPE 'estimators are close to a Bayesian solution
since Morris obtained his uncertainty measure by approximating the posterior variance using
flat uniform priors on the )J and B .

, For the above model and the standard imtruncated unbiased quadratic estimator of A,

Lahiri (1995) approximated mspeiLW up to the order Op(m- I
) and obtained the following

result:

JLW . ~ ~ D2 D2
2

mspel =gl/(A) + g2l(A) + ~ (b2-1) + ~ (b2-1)u1
m(A+D) m(A+D)2

_ 2D
2

r;;u
meA + D)3/2 VUI I 1

2 ~ 3 ~ 2 -
where b, =m3 I(A + D) , b2 =m, I(A + D) and u1 =(Y/ - y) . Here b, and b2 can be

viewed as estimated skewness and kurtosis for the marginal distribution of YI'S. Under

normality, b, ~ 0 and b2 ~ 3 and so in this case mspe;LW reduces to

JLW . ~ ~ 2D2 2D2
2

mspe/ =gl/(A)+g2/(A)+ ~ + ~ 2U"
m(A+D) m(A+D)

It is reasonable to expect that in this case mspe;LW is identical to mspe~ and mspe/BLcorrect

up to the order Op(m-I).

We can define the first level (or conditional) mean square prediction error as:

CMSPE(O,) =E[(O, -0/)210], where the expectation is taken over the first level of the

model, i.e., conditioning on the 0/ 's. Rivest and Belmonte (1999) proposed an unbiased

estimator of CMSPE. Hwang and Rao (1987) obtained a similar unbiased estimator earlier
and, using a Monte Carlo simulation study, showed that the Prasad-Rao MSPE estimator is
more stable than such an unbiased estimator of CMSPE. Interestingly, their simulation
results showed that the Prasad-Rao MSPE estimator tracks the CMSPE very well under a
moderate deviation from the level 2 model. However, the Prasad-Rao MSPE estimator
could perform poorly compared to the CMSPE unbiased estimator for an outlying small-area.
This may be due to the fact that the Prasad-Rao MSPE estimator is not area specific in terms
of the main variable. The jackknife and the parametric bootstrap MSPE estimators are likely
to perform better than the Prasad-Rao estimator in this situation as both of them are area­
specific with respect to the main variable. However, this conjecture remains to be validated
through a Monte Carlo simulation study.

5. CONCLUDING REMARKS

The Fay-Herriot model assumes known sampling variances and thus all theMSPE
estimators discussed in' this paper underestimate the true uncertainty of an EBLUP.
Nonetheless, the Fay-Herriot model has been widely used in practice because of its simplicity
and its ability to produce EBLUP's that are design-consistent. As an alternative to the Fay-
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Herriot aggregate level model, one can explore modeling the individual responses. However,
this poses the challenging problem of modeling complex survey data and producing estimates
that are design-consistent. We have not reviewed various complex small area modeling and
design-consistency issues in this paper but will refer the readers to the relevant papers cited in
Rao (2003).
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